Unironically, magnetism is similar to charge, which is similar to mass.
You (probably) wouldn’t ask “But why does an atom weigh anything?” or “why do opposite charges attract?” All these things are just intrinsic properties of matter: they just have them.
So the answer to questions regarding why anything has mass/charge/magnetic moment really come down to “they just do.”
Now, if you want to talk about how and why magnets work at a macroscopic scale, we can have a long and interesting chat about long range ordering and phase transitions, but I’ll leave that for now :)
There’s a lot more to it than “they just do” we just don’t know yet because there’s actually a lot we don’t understand about the fundamental properties of, well, fundamental particles.
See the higgs boson as for why matter has mass. We used to say “inertia is a property of matter” but some clever fucks figured out why and then proved it.
I would argue that the Higgs mechanism is just that: A mechanism for explaining where mass comes from. You could explain charge in a similar way by saying “because the particles are made of a certain amount of up or down quarks”.
Neither of these explanations answer the underlying question “but why does the Higgs mechanism give things mass?” or “but why do up/down quarks give things charge?”.
My point is that, at some stage, you get to the point of “the Higgs boson has mass because it’s an intrinsic property of the Higgs boson”, which is tantamount to “they just do”.
Mass & gravity are still way easier to understand on a fundamental level, especially since everything has a certain amount of mass and thus affects and is affected by gravity. It’s a much simpler concept.
(“Natural”) magnetism is (so far) very material specific and I don’t think I’ve seen a good explanation as to why exactly. Magnets certainly behave very differently than other materials and that causes this mysticism in people when they think about magnets. Given the still ongoing research into magnetism and related things like superconductivity there’s certainly a lot still to learn.
To that I would answer that things don’t “obey the laws of physics” in any greater sense than that the “laws” of physics are principles that we’ve formulated based on how we’ve observed that nature behaves.
We have exactly zero proof that there is some inherent property of nature that always and forever will prevent heat from moving from cold to hot, even though that would violate the second law of thermodynamics. It’s just that we have never observed a process that violates the second law (people have tried very hard to break this one), and have a decent explanation for why we’re not able to break it.
If some process is developed or observed that violates the “laws of physics”, that just means we need to figure out where the “laws” are wrong, and revise them, which is how science moves forwards!
So short answer: Things obey the laws of physics, because whenever we observe something that breaks the laws, we revise the laws to allow for the newly observed behaviour.
This is what makes science fundamentally different from most belief systems: The only core principle is that anything can at any time be disproven, and everything we think we know is potentially wrong. By truly internalising that core belief, there’s no amount of proof that can turn your worldview upside down, because your core principle is that everything you think you know is potentially wrong, only being a more or less good approximation to the true underlying nature of the universe, which we can never really know anything about.
I saw your comment much earlier but was in the middle of my workday and I didn’t have time to review it until now, so I apologize for the delay.
Your answer is interesting, insightful and educational, for all of which I am grateful. I hadn’t considered that perspective and it is all of the adjectives I listed previously.
However, I don’t think it answers at least what I meant by the original question, even if it does answer the literal question I asked. That’s on me for not using sufficiently specific language. What I meant wasn’t “why do things obey the laws of physics as we understand them” or “why do things obey the laws of physics as we’ve defined them” but more “whatever the laws of physics truly are as defined by the universe, what makes the content of the universe obey them?” I was quite young when I asked my dad the question, so at the time I pictured little Marvin the Martian style physics policemen following atoms around enforcing the law, but I suspect that’s not correct.
My question is possibly more philosophical than scientific (or realistically answerable). At that age I was certainly not aware of the simulation hypothesis, which seems like a good starting point, but also raises more questions. Regardless, I appreciate the clearly genuine effort behind your answer as well as the pontification it inspired, at least for me.
An aside: your comment reminded me of the “Maxwell’s Demon” Abstruse Goose comic (which sadly I can’t find to link here) and this Simpsons bit, which clearly I was able to find to link.
I want to reiterate one last time that people who try to answer questions and educate others are extremely valuable and I meant nothing negative about your comment. Thank you for responding.
I was kind of considering that you might have meant the question that way (“why does nature obey whatever underlying law there is”), but as you say, it quickly takes us into philosophical territory.
If I were to give my honest opinion on that as a scientist, I would say that we can never know what the true, underlying guiding principles of the universe are, or even if there are any at all. We can only ever measure the laws of the universe indirectly through observations. This precludes us from ever being 100% certain about the true underlying principles that guide what we’re observing, or even if there are any.
As an example, there’s a hypothesis (can’t recall what it’s called) which postulates that the entire universe is in an unstable state. If that hypothesis is correct, the laws of nature as we know them could in fact change abruptly, with the change propagating at the speed of light. This change could amount to stuff like changing fundamental constants, which would pretty much break the universe as we know it.
I’m familiar (very vaguely) with the unstable universe. It reminds me of an author, Douglas Adams I believe, who wrote "There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened."
That’s a great quote! I just did some searching: I’m thinking about false vacuum, and can live with the fact that if our universe does decay, it will (according to this theory) happen at the speed of light, so it will be impossible to observe before we are instantly wiped out, which is a calming thought.
This is similar to the thought process cracked.com recommended regarding gamma ray bursts, IIRC.
I’m currently doing some studies and only briefly logged in here to check things, but once my boring studies are done, I’ll try to remember to check your link for interesting studies.
The answer is because everything is lazy, and it’s easier to obey the laws of physics than not to. The path of least resistance is real.
Why are the laws of physics the way they are and not different? I have a degree in physics and I still don’t know the answer to that, annoyingly.
Unironically, magnetism is similar to charge, which is similar to mass.
You (probably) wouldn’t ask “But why does an atom weigh anything?” or “why do opposite charges attract?” All these things are just intrinsic properties of matter: they just have them.
So the answer to questions regarding why anything has mass/charge/magnetic moment really come down to “they just do.”
Now, if you want to talk about how and why magnets work at a macroscopic scale, we can have a long and interesting chat about long range ordering and phase transitions, but I’ll leave that for now :)
In addition to “they just do”, the answer is also “we don’t know.” In that sense, icp was right.
Well, we do know why they work, but we don’t know why the way they work works.
There’s a lot more to it than “they just do” we just don’t know yet because there’s actually a lot we don’t understand about the fundamental properties of, well, fundamental particles.
See the higgs boson as for why matter has mass. We used to say “inertia is a property of matter” but some clever fucks figured out why and then proved it.
I would argue that the Higgs mechanism is just that: A mechanism for explaining where mass comes from. You could explain charge in a similar way by saying “because the particles are made of a certain amount of up or down quarks”.
Neither of these explanations answer the underlying question “but why does the Higgs mechanism give things mass?” or “but why do up/down quarks give things charge?”.
My point is that, at some stage, you get to the point of “the Higgs boson has mass because it’s an intrinsic property of the Higgs boson”, which is tantamount to “they just do”.
Mass & gravity are still way easier to understand on a fundamental level, especially since everything has a certain amount of mass and thus affects and is affected by gravity. It’s a much simpler concept. (“Natural”) magnetism is (so far) very material specific and I don’t think I’ve seen a good explanation as to why exactly. Magnets certainly behave very differently than other materials and that causes this mysticism in people when they think about magnets. Given the still ongoing research into magnetism and related things like superconductivity there’s certainly a lot still to learn.
When I was much younger, I asked my dad why things obeyed the laws of physics. That seems similar to your questions in the second paragraph.
Still haven’t gotten a satisfactory answer.
To that I would answer that things don’t “obey the laws of physics” in any greater sense than that the “laws” of physics are principles that we’ve formulated based on how we’ve observed that nature behaves.
We have exactly zero proof that there is some inherent property of nature that always and forever will prevent heat from moving from cold to hot, even though that would violate the second law of thermodynamics. It’s just that we have never observed a process that violates the second law (people have tried very hard to break this one), and have a decent explanation for why we’re not able to break it.
If some process is developed or observed that violates the “laws of physics”, that just means we need to figure out where the “laws” are wrong, and revise them, which is how science moves forwards!
So short answer: Things obey the laws of physics, because whenever we observe something that breaks the laws, we revise the laws to allow for the newly observed behaviour.
This is what makes science fundamentally different from most belief systems: The only core principle is that anything can at any time be disproven, and everything we think we know is potentially wrong. By truly internalising that core belief, there’s no amount of proof that can turn your worldview upside down, because your core principle is that everything you think you know is potentially wrong, only being a more or less good approximation to the true underlying nature of the universe, which we can never really know anything about.
I saw your comment much earlier but was in the middle of my workday and I didn’t have time to review it until now, so I apologize for the delay.
Your answer is interesting, insightful and educational, for all of which I am grateful. I hadn’t considered that perspective and it is all of the adjectives I listed previously.
However, I don’t think it answers at least what I meant by the original question, even if it does answer the literal question I asked. That’s on me for not using sufficiently specific language. What I meant wasn’t “why do things obey the laws of physics as we understand them” or “why do things obey the laws of physics as we’ve defined them” but more “whatever the laws of physics truly are as defined by the universe, what makes the content of the universe obey them?” I was quite young when I asked my dad the question, so at the time I pictured little Marvin the Martian style physics policemen following atoms around enforcing the law, but I suspect that’s not correct.
My question is possibly more philosophical than scientific (or realistically answerable). At that age I was certainly not aware of the simulation hypothesis, which seems like a good starting point, but also raises more questions. Regardless, I appreciate the clearly genuine effort behind your answer as well as the pontification it inspired, at least for me.
An aside: your comment reminded me of the “Maxwell’s Demon” Abstruse Goose comic (which sadly I can’t find to link here) and this Simpsons bit, which clearly I was able to find to link.
https://youtu.be/tuxbMfKO9Pg
I want to reiterate one last time that people who try to answer questions and educate others are extremely valuable and I meant nothing negative about your comment. Thank you for responding.
Thank you for the kind response!
I was kind of considering that you might have meant the question that way (“why does nature obey whatever underlying law there is”), but as you say, it quickly takes us into philosophical territory.
If I were to give my honest opinion on that as a scientist, I would say that we can never know what the true, underlying guiding principles of the universe are, or even if there are any at all. We can only ever measure the laws of the universe indirectly through observations. This precludes us from ever being 100% certain about the true underlying principles that guide what we’re observing, or even if there are any.
As an example, there’s a hypothesis (can’t recall what it’s called) which postulates that the entire universe is in an unstable state. If that hypothesis is correct, the laws of nature as we know them could in fact change abruptly, with the change propagating at the speed of light. This change could amount to stuff like changing fundamental constants, which would pretty much break the universe as we know it.
I’m familiar (very vaguely) with the unstable universe. It reminds me of an author, Douglas Adams I believe, who wrote "There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened."
That’s a great quote! I just did some searching: I’m thinking about false vacuum, and can live with the fact that if our universe does decay, it will (according to this theory) happen at the speed of light, so it will be impossible to observe before we are instantly wiped out, which is a calming thought.
This is similar to the thought process cracked.com recommended regarding gamma ray bursts, IIRC.
I’m currently doing some studies and only briefly logged in here to check things, but once my boring studies are done, I’ll try to remember to check your link for interesting studies.
The answer is because everything is lazy, and it’s easier to obey the laws of physics than not to. The path of least resistance is real.
Why are the laws of physics the way they are and not different? I have a degree in physics and I still don’t know the answer to that, annoyingly.
IIRC, this is pretty close to what he said, except his degree was in engineering. Thank you for the response.
This reminded me of Richard Feynman talking about this very topic. Always enjoy rewatching it.
https://youtu.be/MO0r930Sn_8
I love watching Feynman prove icp right.