I thought that the frequency of light was directly inverse to the wavelength by a constant. In other words, I assumed that graphing the frequency of light as a function of wavelength would be a straight inverse line. Because of that, the graphs for the distribution of light from the sun as functions of frequency and wavelength would be exactly the same, but reversed. Yet, this is not what is reported in the linked article. Even more confusing to me is that the different functions peak at different light. When as a function of frequency, the light peaks at infrared. When as a function of wavelength, the light peaks at violet.

What am I misunderstanding? Is the frequency of light not directly proportional to it’s wavelength? Or is this something to do with the way we are measuring the light from the Sun?

  • Kethal@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    6 months ago

    This covers it all well, but I think a simple explanation is that although “W/m^2/x” looks the same on the axes, it’s not the same. f=1/w, so one axis is W/m^2/f and one is W/m^2*f. The article makes a big deal out of the differences as if the x axis were the only difference, but they’re just very different things being plotted.