Software Engineer (iOS - ForeFlight) 🖥📱, student pilot ✈️, HUGE Colorado Avalanche fan 🥅, entrepreneur (rrainn, Inc.) ⭐️ https://charlie.fish/

  • 38 Posts
  • 50 Comments
Joined 2 年前
cake
Cake day: 2023年6月11日

help-circle


  • So someone else suggested to reduce the learning rate. I tried that and at least to me it looks a lot more stable between runs. All the code is my original code (none of the suggestions you made) but I reduced the learning rate to 0.00001 instead of 0.0001.

    Not quite sure what that means exactly tho. Or if more adjustments are needed.

    As for the confusion matrix. I think the issue is the difference between smoothed values in TensorBoard vs the actual values. But I just ran it again with the previous values to verify. It does look like it matches up if you look at the actual value instead of the smoothed value.







  • Thanks so much for the reply!

    The convolution size seems a little small

    I changed this to 5 instead of 3, and hard to tell if that made much of an improvement. It still is pretty inconsistent between training runs.

    If it doesn’t I’d look into reducing the number of filters or the dense layer. Reducing the available space can force an overfitting network to figure out more general solutions

    I’ll try reducing the dense layer from 128 to 64 next.

    Lastly, I bet someone else has either solved the same problem as an exercise or something similar and you could check out their network architecture to see if your solution is in the ballpark of something that works

    This is a great idea. I did a quick Google search and nothing stood out to start. But I’ll dig deeper more.


    It’s still super weird to me that with zero changes how variable it can be. I don’t change anything, and one run it is consistently improving for a few epochs, the next run it’s a lot less accurate to start and declines after the first epoch.








  • Your instance is the one that federates. However it starts with a user subscribing to that content. Your instance won’t federate normally without user interaction.

    Normally the solution for the second part is relays. But that isn’t something Lemmy supports currently. This issue is very common with smaller instances. It isn’t as big of a deal with bigger instances since users are more likely to have subscribed to more communities that will automatically be federated to your instance. You could experiment with creating a user and subscribing to a bunch of communities so they get federated to your instance.











  • This worked!!! However it now looks like I have to pass in 32 (batch size) comments in order to run a prediction in Core ML now? Kinda strange when I could pass in a single string to TensorFlow to run a prediction on.

    Also it seems to be much slower than my Create ML model I was playing with. Went from 0.05 ms on average for the Create ML model to 0.47 ms on average for this TensorFlow model. Looks like this TensorFlow model also is running 100% on the CPU (not taking advantage of GPU or Neural Engine).

    Obviously there are some major advantages to using TensorFlow (ie. I can run on a server environment, I can better control stopping training early based on that val_accuracy metric, etc). But Create ML seems to really win in other areas like being able to pass in a simple string (and not having to worry about tokenization), not having to pass in 32 strings in a single prediction, and the performance.

    Maybe I should lower my batch_size? I’ve heard there are pros and cons to lowering & increasing batch_size. Haven’t played around with it too much yet.

    Am I just missing something in this analysis?

    I really appreciate your help and advice!