As a software developer, the less ambiguous your notation is, the better it is for everyone involved. Not only will I use brackets, I’ll split my expression into multiple rows and use tabs to make it as readable as humanly possible. And maybe throw a comment or 2 if there’s still some black magic involved
For real though, I have written some truly monstrous operations in Excel.
What do you mean you want to use Excel to manage everyone’s calendars? And now you want to export that horribly built calendar management spreadsheet to Google Calendar? What do you mean you want the Google Calendar entries automatically formatted based on who is working on a particular day? I mean yes it’s possible but-…
As a professor said, most programming languages don’t care about readability and whitespace. But we care because humans need it to parse meaning. Thus, write code for people, not for the machine. Always assume that someone with no knowledge of the context will have to debug it, and be kind to them. Because that someone might be you in six months when you have completely forgotten how the code works.
Yep, if you’re writing code for a machine, just do it in binary to save compilation time (/s just in case). Also, you in six months will indeed be someone with no knowledge of the context. And every piece of code you think you write for one-time use is guaranteed to be reused every day for the next 5 years
Yeah I totally agree. You can minimize and optimize as part of your build procedure/compilation but the source code should be as readable as possible for humans.
I had someone submit a pull request recently that, in addition to their actual changes, also removed every single parenthesis that wasn’t strictly necessary in a file full of 3D math functions. I know it was probably the fault of an autoformatter they used, but I was still the most offended I’ve ever been at a pull request.
I genuinely hate being human for this stuff. So many things have such crazy computational shortcuts, it’s sometimes difficult to remember which part represents reality. Outside of the realm of math, where “imaginary” numbers are still a touch of enigma to me, so many algorithms are based on general assumptions about reality or the specific task, that the programmatic approach NEVER encapsulates the full scope of the problem.
As in, sometimes if you know EXACTLY how a tool works, you might still have no idea about the significance of that tool. Even in a universe where no one is lazy, and everyone wants to know “why?”, the answers are NOT forthcoming.
Ok but that’s unrelated to putting some numbers and operations in a calculator. No one is going to proofread that. If anything, you simply calculate it again.
As a software developer, the less ambiguous your notation is, the better it is for everyone involved. Not only will I use brackets, I’ll split my expression into multiple rows and use tabs to make it as readable as humanly possible. And maybe throw a comment or 2 if there’s still some black magic involved
deleted by creator
Calm down, Satan
deleted by creator
The one-liner: *parses HTML with a regex*
cthulhu fthagn
That almost seems cute next to the shit the obfuscated c contest pulls off. https://www.ioccc.org/years.html
For some context this is one of the winning entries:
#include <stdio.h>
#define N(a) “%”#a"$hhn" #define O(a,b) “%10$”#a"d"N(b) #define U “%10$.*37$d” #define G(a) “%”#a"$s" #define H(a,b) G(a)G(b) #define T(a) a a #define s(a) T(a)T(a) #define A(a) s(a)T(a)a #define n(a) A(a)a #define D(a) n(a)A(a) #define C(a) D(a)a #define R C(C(N(12)G(12))) #define o(a,b,c) C(H(a,a))D(G(a))C(H(b,b)G(b))n(G(b))O(32,c)R #define SS O(78,55)R “\n\033[2J\n%26$s”; #define E(a,b,c,d) H(a,b)G©O(253,11)R G(11)O(255,11)R H(11,d)N(d)O(253,35)R #define S(a,b) O(254,11)H(a,b)N(68)R G(68)O(255,68)N(12)H(12,68)G(67)N(67)
char* fmt = O(10,39)N(40)N(41)N(42)N(43)N(66)N(69)N(24)O(22,65)O(5,70)O(8,44)N( 45)N(46)N (47)N(48)N( 49)N( 50)N( 51)N(52)N(53 )O( 28, 54)O(5, 55) O(2, 56)O(3,57)O( 4,58 )O(13, 73)O(4, 71 )N( 72)O (20,59 )N(60)N(61)N( 62)N (63)N (64)R R E(1,2, 3,13 )E(4, 5,6,13)E(7,8,9 ,13)E(1,4 ,7,13)E (2,5,8, 13)E( 3,6,9,13)E(1,5, 9,13)E(3 ,5,7,13 )E(14,15, 16,23) E(17,18,19,23)E( 20, 21, 22,23)E (14,17,20,23)E(15, 18,21,23)E(16,19, 22 ,23)E( 14, 18, 22,23)E(16,18,20, 23)R U O(255 ,38)R G ( 38)O( 255,36) R H(13,23)O(255, 11)R H(11,36) O(254 ,36) R G( 36 ) O( 255,36)R S(1,14 )S(2,15)S(3, 16)S(4, 17 )S (5, 18)S(6, 19)S(7,20)S(8, 21)S(9 ,22)H(13,23 )H(36, 67 )N(11)R G(11)""O(255, 25 )R s(C(G(11) ))n (G( 11) )G( 11)N(54)R C( “aa”) s(A( G(25)))T (G(25))N (69)R o (14,1,26)o( 15, 2, 27)o (16,3,28 )o( 17,4, 29)o(18 ,5,30)o(19 ,6,31)o( 20,7,32)o (21,8,33)o (22 ,9, 34)n(C(U) )N( 68)R H( 36,13)G(23) N(11)R C(D( G(11))) D(G(11))G(68)N(68)R G(68)O(49,35)R H(13,23)G(67)N(11)R C(H(11,11)G( 11))A(G(11))C(H(36,36)G(36))s(G(36))O(32,58)R C(D(G(36)))A(G(36))SS
#define arg d+6,d+8,d+10,d+12,d+14,d+16,d+18,d+20,d+22,0,d+46,d+52,d+48,d+24,d
+26,d+28,d+30,d+32,d+34,d+36,d+38,d+40,d+50,(scanf(d+126,d+4),d+(6
-2)+18*(1-d[2]%2)+d[4]*2),d,d+66,d+68,d+70, d+78,d+80,d+82,d+90,d+
92,d+94,d+97,d+54,d[2],d+2,d+71,d+77,d+83,d+89,d+95,d+72,d+73,d+74
,d+75,d+76,d+84,d+85,d+86,d+87,d+88,d+100,d+101,d+96,d+102,d+99,d+
67,d+69,d+79,d+81,d+91,d+93,d+98,d+103,d+58,d+60,d+98,d+126,d+127,
d+128,d+129
char d[538] = {1,0,10,0,10};
int main() { while(*d) printf(fmt, arg); }
I tried to read that out loud and summoned something. Please help me, I’m scared.
Pinhead: No. It is a means by which to summon us.
Give in. Let it take you.
Everything is okay. Shhhhhhh.
this straight up looks like a chemical formula
If I cross my eyes hard enough on mobile… I imagine I can see dickbutt in there somewhere…
Further up the thread, someone mentioned that writing good software is about communicating concepts to people, first and foremost.
This, code obfuscation, is what it looks like to communicate exclusively to the compiler instead.
Excel has entered the chat
For real though, I have written some truly monstrous operations in Excel.
VBA has made things so, so much easier since I started learning how to use it.
Well, this is exactly what mathematicians do.
As a professor said, most programming languages don’t care about readability and whitespace. But we care because humans need it to parse meaning. Thus, write code for people, not for the machine. Always assume that someone with no knowledge of the context will have to debug it, and be kind to them. Because that someone might be you in six months when you have completely forgotten how the code works.
Exactly. You read code way more times than you write it, so it makes all the sense in the world to prioritize readability.
Source code is for humans, then the compiler turns it into code for machines.
Python forcing end of line and tabs kinda does. Add Black auto-formatter and it’s pretty good.
I’ve seen too many Python devs write out complex statements all on one crammed up line. Including some that are in the main docs.
Enforced whitespace is just one aspect of readable code. There are many others, and Python is no better at enforcing those than any other language.
Yep, if you’re writing code for a machine, just do it in binary to save compilation time (/s just in case). Also, you in six months will indeed be someone with no knowledge of the context. And every piece of code you think you write for one-time use is guaranteed to be reused every day for the next 5 years
This. Always be kind to your future self.
Yeah I totally agree. You can minimize and optimize as part of your build procedure/compilation but the source code should be as readable as possible for humans.
I had someone submit a pull request recently that, in addition to their actual changes, also removed every single parenthesis that wasn’t strictly necessary in a file full of 3D math functions. I know it was probably the fault of an autoformatter they used, but I was still the most offended I’ve ever been at a pull request.
Autoformatter? More like obfuscator
I genuinely hate being human for this stuff. So many things have such crazy computational shortcuts, it’s sometimes difficult to remember which part represents reality. Outside of the realm of math, where “imaginary” numbers are still a touch of enigma to me, so many algorithms are based on general assumptions about reality or the specific task, that the programmatic approach NEVER encapsulates the full scope of the problem.
As in, sometimes if you know EXACTLY how a tool works, you might still have no idea about the significance of that tool. Even in a universe where no one is lazy, and everyone wants to know “why?”, the answers are NOT forthcoming.
You’re a good human being.
As someone who used to code in Lisp, I’m all for excessive paranthesis use.
Ok but that’s unrelated to putting some numbers and operations in a calculator. No one is going to proofread that. If anything, you simply calculate it again.