- cross-posted to:
- [email protected]
- [email protected]
- cross-posted to:
- [email protected]
- [email protected]
The upper stage from a Chinese rocket that launched a batch of Internet satellites Tuesday has broken apart in space, creating a debris field of at least 700 objects in one of the most heavily-trafficked zones in low-Earth orbit. US Space Command, which tracks objects in orbit with a network of radars and optical sensors, confirmed the rocket breakup Thursday. Space Command initially said the event created more than 300 pieces of trackable debris. The military’s ground-based radars are capable of tracking objects larger than 10 centimeters (4 inches). Later Thursday, LeoLabs, a commercial space situational awareness company, said its radars detected at least 700 objects attributed to the Chinese rocket. The number of debris fragments could rise to more than 900, LeoLabs said. The culprit is the second stage of China’s Long March 6A rocket, which lifted off Tuesday with the first batch of 18 satellites for a planned Chinese megaconstellation that could eventually number thousands of spacecraft. The Long March 6A’s second stage apparently disintegrated after placing its payload of 18 satellites into a polar orbit.
Space Command said in a statement it has “observed no immediate threats” and “continues to conduct routine conjunction assessments to support the safety and sustainability of the space domain.” According to LeoLabs, radar data indicated the rocket broke apart at an altitude of 503 miles (810 kilometers) at approximately 4:10 pm EDT (20:10 UTC) on Tuesday, around 13-and-a-half hours after it lifted off from northern China. At this altitude, it will take decades or centuries for the wispy effect of aerodynamic drag to pull the debris back into the atmosphere. As the objects drift lower, their orbits will cross paths with SpaceX’s Starlink Internet satellites, the International Space Station and other crew spacecraft, and thousands more pieces of orbital debris, putting commercial and government satellites at risk of collision.
“Trickle-down” in action!